ZALCMAN CONJECTURE FOR SOME SUBCLASSES OF ANALYTIC FUNCTIONS DEFINED BY SĂLĂGEAN OPERATOR

HALİT ORHAN AND EVRİM TOKLU

Abstract. The aim of this investigation is to give a new subclass of analytic functions defined by Sălăgean differential operator and find upper bound of Zalcman functional \(|a_n^2 - a_{2n-1}|\) for functions belonging to this subclass for \(n = 3\).

1. Introduction

Let \(\mathcal{A}\) denote the class of functions \(f\) of the form
\[
f(z) = z + \sum_{n \geq 2} a_n z^n
\]
which are analytic in the open unit disk \(U := \{z \in \mathbb{C} : |z| < 1\}\) and satisfy the normalization conditions \(f(0) = f'(0) - 1 = 0\).

We also denote by \(\mathcal{S}\) the class of all functions in the normalized analytic function class \(\mathcal{A}\) which are univalent in \(U\) (for details, see [3]). We say that \(f\) is starlike on the open unit disk \(U\) with respect to origin, denoted by \(f \in \mathcal{S}^\ast\) if \(f\) is univalent on \(U\) and the image \(f(U)\) is a starlike domain with respect to origin. Also, we say that \(f\) is convex on \(U\), denoted by \(f \in \mathcal{C}\) if \(f\) is univalent on \(U\) and the image \(f(U)\) is a convex domain in \(\mathbb{C}\). A function \(f \in \mathcal{S}\) is called starlike function of order \(\alpha\) \((0 \leq \alpha < 1)\), denoted by \(f \in \mathcal{S}^\ast(\alpha)\), if
\[
\Re\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \quad z \in U.
\]
Moreover, we say that \(f\) is convex function of order \(\alpha\) \((0 \leq \alpha < 1)\), denoted by \(f \in \mathcal{C}(\alpha)\), if
\[
\Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha, \quad z \in U.
\]
Nishiwaki and Owa [6] investigated the class \(\mathcal{M}(\alpha)\) \((\alpha > 1)\) which is the subclass of \(\mathcal{A}\) consisting of functions \(f(z)\) which satisfy the inequality
\[
\Re\left(\frac{zf'(z)}{f(z)}\right) < \alpha, \quad z \in U
\]
and let \(\mathcal{N}(\alpha)\) \((\alpha > 1)\) be the subclass of \(\mathcal{A}\) consisting of functions \(f(z)\) which satisfy the inequality
\[
\Re\left(1 + \frac{zf''(z)}{f'(z)}\right) < \alpha, \quad z \in U.
\]
Then, we observe that \(f(z) \in \mathcal{N}(\alpha)\) if and only if \(zf' \in \mathcal{M}(\alpha)\).

For convenience, we set \(\mathcal{M}(3/2) = \mathcal{M}\) and \(\mathcal{N}(3/2) = \mathcal{N}\). For \(1 < \alpha \leq 4/3\), the classes of \(\mathcal{M}(\alpha)\) and \(\mathcal{N}(\alpha)\) were studied Uralegaddi et al. [12]. Singh and Singh [11, Theorem

2010 Mathematics Subject Classification. 30C45.

Key words and phrases. Univalent function, bi-univalent function, Coefficient bounds.
proved that function in \(N \) are starlike in \(U \). Saitoh et al. [9] and Nunokawa [7] have improved the result of Singh and Singh [11, Theorem 6].

At the end of 1960’s, Lawrence Zalcman posed a conjecture that the coefficients of \(S \) satisfy the sharp inequality
\[
|a_{2n}^2 - a_{2n-1}| \leq (n - 1)^2,
\]
with equality only for the Koebe function and its rotations. This important conjecture implies the Bieberbach conjecture, scrutinized by many mathematicians, and still remains a very difficult open problem for all \(n > 3 \); it was proved only in certain special subclasses of \(S \) in [2, 5]. The case \(n = 2 \) is the elementary best-known Fekete-Szegő inequality. The more recently Bansal and Sokół [1] investigated the validity of Zalcman conjecture for \(n = 3 \) for the functions belonging to the classes \(M \) and \(N \) defined above.

For a function \(f(z) \) belonging to \(A \), Salagean [10] has introduced the following differential operator called Salagean operator:
\[
D^0 f(z) = f(z);
\]
\[
D^1 f(z) = D f(z) = zf'(z);
\]
\[
D^k f(z) = D(D^{k-1} f(z)) \quad (k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\} \text{ where } \mathbb{N} = \{1, 2, 3, \ldots\}).
\]
We can easily observe that
\[
D^k f(z) = z + \sum_{n \geq 2} n^k a_n z^n.
\]

Definition 1.1. A function \(f \in A \) is said to be in the class \(M_k(\alpha) \), if the following condition is satisfied:
\[
\text{Re} \left(\frac{D^{k+1} f(z)}{D^k f(z)} \right) < \alpha; \quad \alpha > 1, \ z \in U.
\]

For convenience, we put \(M_k(3/2) = M_k \). Taking \(k = 0 \) and \(k = 1 \) in Definition 1.1, we obtain that \(M_0 \equiv M \) and \(M_1 \equiv N \).

It is worth mentioning that the following lemma play a basic role in building our main result.

Lemma 1.1. (see [3]) If a function \(p \in \mathcal{P} \) is given by
\[
p(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \ldots \quad (z \in U),
\]
then
\[
|c_i| \leq 2 \quad \text{and} \quad |p_i - p_s p_{i-s}| \leq 2 \quad (i, s \in \mathbb{N})
\]
where \(\mathcal{P} \) is the family of all functions \(p, \) analytic in \(U \) for which \(p(0) = 1 \) and \(\text{Re}(p(z)) > 0, \ z \in U \). Moreover, these inequalities are sharp for all \(i \) and for all \(s \), equality being attained for each \(i \) and for each \(s \) by the function \(p(z) = (1 + z)/(1 - z) \).

The second inequality in Lemma 1.1 was given by Livingston [4].

2. Main Results

Our main result is contained in the following theorem:

Theorem 2.1. Let the function \(f(z) \) given by (1.1) be in the class \(M_k \). Then
\[
|a_3^2 - a_5| \leq \frac{1}{96.5^k 3^{2k}} \left(2 |6.5^k - 3^{2k}| + |6.2.5^k - 10.3^{2k}| + 24.3^{2k} \right).
\]
Proof. Let the function \(f(z) \in M_k \) be given by (1.1), then there exists a function \(p \in P \) of the form (1.6), such that
\[
\frac{D^{k+1}f(z)}{D^kf(z)} = \frac{1}{2}(3 - p(z)),
\]
which in terms of power series is equivalent to
\[
2D^{k+1}f(z) = (D^kf(z)) \left(2 - \sum_{n \geq 1} p_n z^n\right)
\]
or
\[
2 \left(z + \sum_{n \geq 2} n^{k+1} a_n z^n\right) = \left(z + \sum_{n \geq 2} n^k a_n z^n\right) \left(2 - \sum_{n \geq 1} p_n z^n\right).
\]
After some elementary calculations, we arrive at
\[(2.2)\quad a_2 = -\frac{1}{2.5k} p_1, \]
\[(2.3)\quad a_3 = \frac{1}{8.3k} \left(p_1^2 - 2p_2\right), \]
\[(2.4)\quad a_4 = \frac{1}{48.4k} \left(6p_1p_2 - 8p_3 - p_1^3\right), \]
\[(2.5)\quad a_5 = \frac{1}{384.5k} \left(p_1^4 + 12p_2^2 + 32p_1p_3 - 48p_4 - 12p_1^2p_2\right).
\]
By using (2.3), (2.5) and Lemma 1.1, we arrive at
\[
|a_3^2 - a_5| = \frac{1}{384} \left(\frac{6}{32k} \left(p_1^2 - 2p_2\right)^2 - \frac{1}{5k} \left(p_1^4 + 12p_2^2 + 32p_1p_3 - 48p_4 - 12p_1^2p_2\right)\right)
\]
\[
= \frac{1}{384.5k.32k} \left(6.5^k \left(p_1^4 - 4p_1^2p_2 + 4p_2^2\right) - 3^2k \left(p_1^4 + 12p_2^2 + 32p_1p_3 - 48p_4 - 12p_1^2p_2\right)\right)
\]
\[
= \frac{1}{384.5k.32k} \left(\left(6.5^k - 3^2k\right) \left(p_2 - p_1^2\right)^2 + \left(6.2.5^k - 10.3^2k\right) p_2 \left(p_2 - p_1^2\right) + \left(6.5^k - 3^2k\right) p_2^2 + 3^2k \cdot 32 \left(p_4 - p_1p_3\right) + 3^2k \cdot 32 \right)
\]
\[
\leq \frac{1}{96.5^k.32k} \left(2 \left|6.5^k - 3^2k\right| + \left|6.2.5^k - 10.3^2k\right| + 24.3^2k\right).
\]
Thus, the proof of Theorem 2.1 is completed. \(\square \)

Now, we would like to draw attention to some remarkable results which are obtained for some values of \(k \) in Theorem 2.1.

Taking \(k = 0 \) in Theorem 2.1, we obtain the following result.

Corollary 2.1 (see [1]). Let the function \(f \in \mathcal{M} \) be defined by (1.4), then
\[
|a_3^2 - a_5| \leq \frac{3}{8}.
\]
The result is sharp.

Setting \(k = 1 \) in Theorem 2.1, we get the following result.

Corollary 2.2 (see [1]). Let the function \(f \in \mathcal{N} \) be defined by (1.4), then
\[
|a_3^2 - a_5| \leq \frac{1}{15}.
\]
References

Department of Mathematics, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
Email address: horhan@atauni.edu.tr

Department of Mathematics, Faculty of Science, Ağrı İbrahim Çeçen University, 04100 Ağrı, Turkey
Email address: etoklu@agri.edu.tr